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Abstract

Classical convective-dispersive type transport models are often found to be of limited use for
predicting solute tramsport in structured soils or fractured aquifer systems. Recently a number of
deterministic “"two-region” type models have appeared in the literature that consider transport in
structured soils from a microscopic (macropore-scale) point of view. In these models, the chemical is
assumed to be transported through a single pore or crack of known geometry, or through the voids
between well-defined, uniformly—sized aggregates. In addition, diffusion-type equations are used to
describe solute transfer from the larger pores into the soil matrix. Analytical solutions are now
available for transport between spherical, cylindrical and rectangular aggregates. This paper
describes a method that extends the two-region modeling approach to more general conditions involving
aggregates of arbitrary geometry. The method is based on the use of a geometry-dependent shape factor
(f) that transforms an aggregate of given shape and size (platy, columnar, prismatic) into an
equivalent sphere with similar diffusion characteristics as the original aggregate. Values for f were
derived empirically by matching average concentrations of individual soil aggregates with those of
spherical aggregates. Using conversions between known analytical solutions as test cases, the
transformation was found to be very accurate for most aggregate geometries commonly encountered in the
field. A similar transformation was also used to quantify the unknown mass transfer coefficient in a
previously employed first-order rate expression for solute exchange between "mobile"” (interaggregate)
and "immobile" (intra-aggregate) regions. An advantage of this last approach is that it can be

included easily and effectively in one— or multi-dimensional numerical transport models.

INTRODUCTION

Large macropores in a field soll can significantly alter the rate of water and solute movement [e.g.,
see reviews by Thomas and Phillips (1979), Bouma (1981l) and by Beven and German (1982)]. Macropores
may appear in the form of drying cracks, as earthworm or gopher holes, decayed root channels, or more
generally as interpedal voids 1in aggregated 'soils. It is now being recognized that classical
convective—dispersive type transport equations are of limited use when predicting solute movement
through soils containing such macropores. Recently, a number of “"two-region” models have appeared in
the literature that consider transport through structured soils from a microscopic (macropore-scale)
point of view. In these models, the chemical is assumed to be transported through a single and well-
defined pore or crack of known geometry, or through the voids between well-defined, uniformly-sized
aggregates. In addition, diffusion—type equations are used to describe the transfer of solute from the
larger pores into the soll matrix (and vice-versa). Assuming long-term steady-state liquid flow,
analytical solutions for these two-region type models are now available for transport through rectangu-
lar voids (Sudicky and Frind, 1982), hollow cylindrical macropores (van Genuchten et al., 1984), and
for transport through the voids between spherical (Rasmuson and Neretnieks, 1980) or solid cylindrical
aggregates (Pellett, 1966). In addition, relatively simple solutions are available that neglect solute
dispersion in the macropores (Skopp and Warrick, 1974), or that assume matrix diffusion into aggregates

of infinite dimensions (Tang et al., 1981; Grisak and Pickens, 1981).
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Except for studies by Neretnieks (1972) and Rao et al. (1982), few attempts have been made to extend
the two-region modeling approach to more general conditions involving aggregates of arbitrary shape and
size. For example, some structured solls contain relatively uniformly-sized columnar, prismatic or
blocky aggregates, while others contain a mixture of different sizes. Still other soils contain
aggregate geometries that vary with depth or even in time [for reviews on soll structure and soil
aggregation, see Baver et al. (1972) and Hillel (1980)]. Thus, the variability of aggregate geometries
in the field makes it difficult to formulate one theory that can be applied to all soils irrespective
of their specific structure. The purpose of this paper is to present a procedure that can be used to
transform soils with different aggregate shapes and sizes (platy, columnar, prismatic) into a reference
soil made up of uniformly-sized aggregates of known geometry (e.g., spherical aggregates). A similar
transformation is also used to quantify the unknown mass transfer coefficient in a previously employed
first-order rate expression to account for the diffusional exchange between "mobile" (interaggregate)
and "immobile"” (intra-aggregate) regions (van Genuchten and Wierenga, 1976). An important advantage of
the method is that the "mobile-immobile” region approach, previously thought to be mostly empirical,

can now be formulated in terms of measurable soil-physical parameters.

SUMMARY OF ANALYTICAL SOLUTIONS

First, let us briefly summarize available analytical solutions of the two-region transport model for a
number of well-defined aggregates. The general equation describing transport in the macropore system
is taken as (van Genuchten et al., 1984)

ch acim azcm ch
emRm ot + e:i.mRim at emDm az2 - mvm 3z (1]

where qm and eim are the volumetric water contents of the interaggregate (macropore) and intra-aggrega-—
te (micropore) liquid phases such that em+ eim= 6 is the total water content of the entire soil system,
Rm and Rim are the retardation factors of the two regions, Cn and Cyp are the average solution
concentrations of the inter- and intra-aggregate liquid phases, respectively, Dm is the dispersion
coefficient for tramsport through the macropore region, v, is the average pore-water velocity of the
macropore liquid phase, z is soil depth and t is time. Transverse diffusion and dispersion processes
in the macropore liquid phase are assumed to be so domimant that no cross—sectional concentration
gradients are present in this phase. Also, convective transport in the soil matrix is assumed to be

negligible.

Transport Around Uniformly-Sized Spherical Aggregates

Equation [1] is formulated independently of the aggregate geometry. For a soil made up of uniformly-

sized spherical aggregates, Cym Yepresents the average concentration of a sphere:

3 22
cim(z,t) = ;3 g rc (z,r,t) dr [2]

where ¢, is the local concentration in the spherical aggregate, r is the radial coordinate and a is the

radius of the sphere. Solute transfer in the aggregate is governed by the spherical diffusion
equation:
3
. . ) EE. 9 rz aca ,
im ot r2 or or (3]
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where Da is the effective diffusion coefficient of the soil matrix. The transport equations above are
augmented with auxiliary conditions requiring that concentrations are continuous at the macropore walls

(Eq. 4a), and that the concentration gradient inside the aggregate at r=0 vanishes (Eq. 4b):

3c ’
cplz,8) = ¢ _(z,a,t) 5 (2,0,£) = 0. [4a,b]

For notational convenience} the following dimensionless variables are introduced:

T=gqt/a@ Z=z/L [5a,b]

P = v L/D £E=r1x/a [6a,b]
DL o R o R

Y= B=3% +5 ®_ - @ [7a,b]
a qRim m m im im

where T is the number of pore volumes leached through a soil profile (or soil column) of depth L, q is
the macroscopic fluid flow density (q = emvm), P is a Peclet number, B is a dimensionless partitioning
coefficient and R the total retardation factor of the soil matrix/macropore system (van Genuchten et
al., 1984). All concentrations (c) are assumed to be in dimensionless form: ¢ = (C - Ci)/(Co— Ci),
where C is the actual concentration, C, is the input concentration at z=0 and Ci is the initial
concentration at t=0. The transport model is solved for an initial concentration of zero (Eq. 8a), a
semi-infinite profile (Eq. 8b), and a flux—type inlet boundary condition at 2Z=0 (Eq. 9):

t

ac
ep(2,0) = ¢ (2,8,0) = 0 w7 (=) = 0 [8a,b]
cp =35 0D = 1. 9]

The analytical solution for the volume-averaged resident concentration of the macropore liquid phase is

1, 2p eXP(P_g_ 2,20 p 2 2 - dA
e (2,T) = E-+ e 2 7 5 [(§-+ zp) sin(2YA'T - sz) - zmcos(ZYA T - sz) Y [10]
0 [GG+2)" + 2]
where
1. 1 1
= [— 2 = [= - 2
z, 5 (r_+ )] z, [2 (:rp nl)] [1la,b]
yQ
- g+
r, (fé ) [12]
p? 2
Q =+ YR(l-BRY 2, = 2YPBRX” + YP(1-8)RY, [13a,b]
_ 3X(sinh2) + sin2)) _ _ 3X(sinh2)X - sin2))
1 coshZX — cosZa 3 ¥ = T oshir - coszr " [14a,b]

Equatjon [10] holds for in-situ concentration measurements inside semi-infinite profiles, but gives
also a good approximation for macropore concentration distributions inside finite columns (Parker and
van Genuchten, 1984). To predict effluent curves from finite systems (Z = 1), the following solution

for the flux—averaged concentration (ce) should be used (see also Rasmuson and Neretnieks, 1980)

-]
2 P 2 da

+ £ i - LA
- g exp(2 zp) sin(ZYSA T zm) + [15]

(NI

e (T) =
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Transport Through Rectangular Voids

For a rectangular void/aggregate system with line-sheet type aggregates, the average micropore liquid
concentration Cym ©f Eq. [1] is given by

a

1
%~ 3 g ca(z,x,t) dx [16]

where a now refers to half the width of the line-sheet aggregate and x is the coordinate perpendicular

to the aggregate. Solute transfer inside the aggregates is governed by the linear diffusion equation

aca Bzca
R, ——=1D (0 <x <a). [17]
im ot a aXZ

Auxiliary conditions for the aggregate are now
ac

a
cm(z,t) = ca(z,a,t) 7;;—(Z,O,t) = 0. [18a,b]

The analytical solution for this problem is exactly the same as for the spherical transport problem

given earlier, except for the following changes (see Eqs. léa,b)

_ _Msinh2) - sin2)) - A(sinh2) + sin2))
1 cosh2X + cos2i 2 cosh2X + cos2) ° [19a,b]

An alternative solution for the same problem but with provisions for linear first-order decay was
derived earlier by Sudicky and Frind (1982).

Transport Through Cylindrical Macropores

The mathematical problem of convective~dispersive transport through cylindrical macropores with
simultaneous matrix diffusion into a finite cylindrical soil mantle surrounding the macropore was
recently solved by van Genuchten et al. (1984). The average micropore concentration in this case is

b

2
¢ p(Zst) =-_-2_ % a{ r ¢ (z,r,t) dr [20]

where a is the radius of the macropore, b represents the radius of the finite soil cylinder surrounding
the macropore, and r is the radial coordinate. Solute transfer in the soil matrix is now described by

the cylindrical diffusion equation:

D ac
a_-_3 a

3
i3 - F o (r 3;-) (a < r <b) [21]

The analytical solution can again be expressed in the same format as before, provided the variables Yl
and Yz of Eq. [14] are redefined as follows

2AIN (M) = My) + Ny(M) + My)] 2A[N (M) + M) - Ny (M - M)

hr 7] 7. 2 ¥, = 2 72 [22a,b]
(g, - 1) (N] +Np) (g5 - (V] + Np)

My = Ber; (g MKer;(}) - Bei) (g A)Kei; (1) - Ker; (& M)Ber; (1) + Kei, (£ N)Bei;(}) [23a]

M2 = Berl(EOA)Keil(A) + Beil(gok)Kerl(k) - Kerl(EOA)Beil(X) - Keil(ioA)Berl(A) [23b]
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=
1

1° Beil(EOA)Ker(k) + Berl(EOA)Kei(A) - Keil(EoA)Ber(X) - Kerl(EOA)Bei(k) [23c]

=
1

2 = Beil(goA)Kei(A) - Berl(EOA)Ker(A) - Keil(goA)Bei(A) + Kerl(EOA)Ber(A) [23d]

Ual
#

o b/a. [23e]

Transport Around Solid Cylindrical Aggregates

The last problem for which an analytical solution was derived deals with solute transport through a
macropore system that surrounds solid cylindrical aggregates. The average micropore liquid concentra-
tion Cin in Eq. [l] is now given by

2 a
Cim = ;E- f r ca(z,r,t) dr [24]

where a refers to the radius of the solid cylinder, and r is the radial coordinate. The local

concentration ¢, In the soil matrix is determined by the cylindrical diffusion equation:

a_._a

a

3¢ D 3 dc
T 3r (r o (0 <r <a). [25]

im ot

An analytical solution for this problem was derived that again has the same format as the solution

given earlier for the spherical transport model, provided Yl and Wz are redefined as

A8 [Ber(A)Ber'(A) + Bei(A)Bei'(N)]
Berz(x) + Beiz(A)

_ AV8 [Ber(M)Bei'()) ~ Bei(A)Ber'()N)]

[26a,b]
Berz(A) + Beiz(k)

Note that this result is much simpler than an earlier solution derived by Pellett (1966).

AN APPROACH USING SHAPE FACTORS

As shown above, analytical solutions for convective-dispersive transport around aggregates having four
different geometries are available. Still, geometries are limited to only four shapes. For example,
no solutions are available for aggregates that have a finite prismatic or columnar structure (i.e.,
aggregates that are finite in the z-direction). To make the analytical solutions useful for transport
through soils with aggregates of widely different geometries, an approach using shape factors is now
formulated. The method is based on a comparison of the diffusion properties of single aggregates in a

non—flowing system.

Analogy With The Diffusion Equation

Consider first the diffusion equation for a single spherical aggregate (Eq. 3). Imposing an initial

concentration of zero (Eq. 27a), a surface concentration of one (Eq. 27b),
c (r,0) =0 c (a,t) =1, [27a,b}]

and solving for the average concentration <ca> as a function of dimensionless time T yields
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6/T/w - 3T+ 12/T 7§ 1erfc(7ﬁ—) (T < 0.1)

n=1 T
Ly = [28]
a ® 22
1-5 gy oexm(nrD (1 > 0.1)
) 3
o n=1 1

where as before the characteristic length a represents the radius of the sphere, and where

= a :
T= [29]

Note that <ca> has the same meaning as Cim in a flowing system (Eq. 2). Similar equations for the
average concentration (ca> as a function of dimensionless time T for a wide range of aggregate
geometries are available (Carslaw and Jaeger, 1959). Those solutions are not repeated here. Figure 1
gives a semilogarithmic plot of <Ca> as a function of T for four aggregate geometries. As before, the
parameter a represents the characteristic length of the aggregate: radius of the sphere or solid
cylinder, half the width of the plane sheet or cube. Note that the curves are displaced with respect
to each other, but that they all have roughly the same sigmoidal shape. A shape factor is now used to
convert an aggregate of given shape and size into a differently-sized or shaped aggregate with
approximately the same diffusion characteristics as the original aggregate. Using the conversion from

a plane-sheet type aggregate into an equivalent sphere as an example, define the shape factor f

2.5 8
follows
(T/T)l/2]| 3
£ = 3 [30]
E.,S s I<C >

a

where the subscripts £ and s refer to the plane sheet and sphere, respectively. Hence, Tl and TS re~

present the dimensionless times for diffusion into a one-dimenisional slab of width 2a£ (Eq. 31la) and

into a sphere of radius a_ (Eq. 31b), respectively:

Dat Dat
T = T = . [31a,b]
L 2 s 2
a R, a R
£'im s im

A formal but impractical way of evaluating Eq. [30] would be to invert Eq. [28] to obtain Ts as a
function of <ca>, doing the same for the plane sheet, and then to substitute those expressioms into
[30] to obtain fl,s as a function of <°a>' Instead, an easier way is to simply read from plots like
those in Fig. 1 for various values of <ca> the dimensionless times Tg and TS for the line sheet and the
sphere, and substituting those values into [30]. This will show that sz"S is a slowly decreasing
function of <ca>. Let us for now ignore this concentration dependency and evaluate Eq. [30] only at
<ey,> = 0.5.  Since TZ(O.S) = 0.197 and 1;(0.5) = 0.0305, Eq. [30] leads to f2 s " 2.54. If we also

>

substitute Egs. [3la,b] into [30], one obtains

ag=f, a, (=2.54ay). [32]

This shows that a plane-sheet type aggregate of half-width a can be replaced with an equivalent sphere
of radius 2.54a that has roughly the same diffusion characteristics as the plane sheet. Use of [32]
has the effect of shifting the horizontal axis for the sphere in Fig. 1 such that the curves for the
sphere and the plane sheet coincide at e > = 0.5. This is further shown in Fig. 2 for the plane sheet
— sphere conversion, as well as for conversion of a rectangular prism with dimensions (2a,2a,2a/3), a
cube (2a,2a,2a) and a solid cylinder (diameter 2a) into equivalent spheres. Note that the spherical
approximation is excellent for the rectangular prism, while the plane-sheet approximation is
considerably less accurate, especially at higher concentrations. The relatively poor approximation of

the plane-sheet aggregate is due to the fact that f s depends quite strongly on the concentration.

2,

518



This is shown in Fig. 3 which gives a plot of the relative shape factor, f/f50, as a function of the
average concentration, <ca>, for various aggregate geometries. The relative shape factor is defined as
the shape factor at any concentration relative to its value at <Ca> = 0.5. Clearly, shape factors for
the solid cylinder (fc,s) and the rectangular prism (fr,s) are far less concentration-dependent than
fl,s for the plane sheet-sphere conversion. The less concentration-dependent a given shape factor, the

better the approximation using equivalent spheres will be.

The shape factors above were defined for the transformation of plane-sheet or other aggregate
geometries into equivalent spheres. Table 1 lists values of various shape factors for conversion into
equivalent spheres, equivalent line sheets, and for use with a first-order type exchange model to be
discussed later. The shape factors in Table 1 can also be used for conversion into aggregates other

than equivalent spheres or line sheets. This is accomplished with the following rules

f1,2 2,37 £1 3 f10=1 [33a,b]

where the subscripts 1, 2, 3 can refer to any of the subscripts (and associated aggregate geometries)
listed in Table 1. 1In particular, note that the subscript assumption 3=1 in Eq. [33a] implies that
fl’2 = f;fl; in other words, the shape factor that transforms a sphere into an equivalent plane sheet
is the inverse of the shape factor that transforms a plane sheet into an equivalent sphere.

Conversions involving the hollow cylinder also require an estimate for go; this will be shown later.

Application To Two-Region Transport Models

The shape factor approach outlined above can be applied immediately to all two-region type transport
models. The transformation of a plane sheet into an equivalent sphere will again be used as an
example. Inspection of the analytical solutions (Eqs. 10, 15) and their dimensionless variables shows
that the diffusion properties of an aggregate (motably the characteristic length, a, and the diffusion

coefficient, D only appear in the dimensionless coefficient y (Eq. 7a). Restating the dimensionless

a)
coefficients y for the spherical aggregate and rectangular void transport models, we have

DaeL DaeL
Y, = o YR [34a,b]
. az R 8 az R
m sl im

where as before the subscripts s and 2 refer to the sphere and plane sheet, respectively. Taking the

ratio of Yg and Yy solving for Yg and using [32] yields

2
a Y
S Y S -
a £
s £,8
or with [34a]
D_6L
v = a [36]
s 2 2 *
£, 6% Wi

Thus, when Eq. [35] or [36] is used for vy in the spherical transport model, that model should predict
in an approximate way also transport through a soil containing parallel rectangular voids. Because
analytical solutions are available for both transport models, the accuracy of the approximation can be
assessed immediately. Calculated breakthrough curves based on Eq. [15] for one set of parameter values

and three values for Yy are shown in Fig. 4a. Results indeed compare very well. As was noted earlier,
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Table 1. Shape factors for the conversion into equivalent spheres, equivalent line sheets, and for

use in an equivalent first—order rate model.

Dimensions Spherical Plane Sheet First-order
Original aggregate (x,5,2) Equivalent Equivalent Equivalent Comments
or (2r,z)
Sphere 2a s,s= 1.000 fs,2= .394 fs,l_ .210 2a=diameter
Plane Sheet 2a, ™, £,s= 2.54 f2’£=1.000 IR .533 2a=width
Rectangular Prism 2a,2a,® r,s= 1.49 fr,},: .585 fr,l_ .312 Rectangle
2a,2a,l6a 1.42 .560 .298
2a,2a,8a 1.36 .535 .285
2a,2a,ba 1.32 <520 .277
2a,2a,4a 1.24 490 .261
2a,2a,3a 1.172 462 246
2a,2a,2a 1.046 412 .220 Cube
2a,2a,4a/3 .892 .351 .187
2a,2a,a 772 304 162
2a,2a,2a/3 602 237 .126
2a,2a,2al4 491 .193 .103
2a,2a,2a/6 .356 140 .0748
2a,2a,2a/8 .279 .110 .0586
Solid Cylinder 2a,= c,s= 1.44 fc,£= .566 c,1 .302 2a=diameter
2a,l6a 1.38 543 .289
2a,8a 1.32 .521 277
2a,6a 1.29 .506 .270
2a,4a 1.21 479 .255
2a,3a 1.149 453 - .241
2a,2a 1.030 406 .216
2a,4a/3 .882 .348 .185
2a,a .766 .302 .161
2a,2a/3 .599 .236 126
2a,2a/4 489 .193 .103
2a,2a/6 .356 <140 0747
2a,2a/8 .279 .110 .0585
Hollow Cylinder 2a,2b, §o= b/a
£o= 2 p,s= 3.13 fp’£=1.23 p,1 .657 2a=pore diameter
Eo-*- 5 3.99 1.57 .838 2b=outer diameter
Eo =10 4.65 1.83 .976 of soil matrix
Eo =20 5.29 2.08 1.110
Eo = 50 6.09 2.40 1.28
go = 100 6.66 2.63 1.40
go = 200 7.21 2.84 1.51
First-Order Rate Model 15" 4.76 f1’£=1.88 1,17 1.000
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the shape factor £ for conversion of the plane sheet into an equivalent sphere was found to be

considerally more cﬁgientratiou-dependent than the shape factors for conversion of the solid cylinder
(fc’s) and several other aggregate forms (Fig. 3) into equivalent spheres. Hence, as compared to the
rectangular void model, one would expect an even . better approximation for transport around solid
cylindrical structures using the spherical transport model. This is indeed demonstrated by the near
perfect fit in Fig. 4b. Judging from Fig. 3, similar accuracies are expected when the spherical model
is used to predict tranéport through soils containing all types of finite or infinite (in the z-

direction) cylindrical or rectangular aggregates (i.e., aggregates of columnar or prismatic structure).

Extension To First-Order Type Rate Models.

Early attemps to deal with transport through aggregated soils frequently used first—order type rate
equations to account for diffusional exchange between "mobile"” and "immobile" regions (Coats and Smith,
1964; van Genuchten and Wierenga, 1976). For that purpose, Eq. (1) was augmented with the first-order

rate expression

m
eimRim . a(cm - Cim) {37]

where o is an empirical rate coefficient that depends in some way on aggregate size and the diffusion
coefficient. For the same initial and boundary conditions as before, the analytical solution for this

transport model is

cy(2,T) = ({T ez, 1) [L-¢e " gue"’xo(z/;&) do] dt [38]
where

8(2,) = <;§:—;12exp[- 3%’;;—{——”—21 - g exp(P2) erfc[(zm‘:—gl/ztsnz + 0] [39]
and

u = % w = —‘("%. [40a,b]

The solution above uses the same dimensionless variables as before, except for Yy (Eq. 7a) which must be

replaced by
w= d/q [41]

For the effluent curve from a finite column (or soil profile), g(Z,T) in [38] is given by

PR 2 P(éR - p?
gz, zg(l,1) = ( 3)  expl- BT 1. [42]
4ot

The same procedure using shape factors can also be applied here if we associate [37] with a given
aggregate of known size and shape. Integrating [37] for an initial concentration of zero and keeping
¢, at unity ylelds

> 2o (M) = 1 - exp(~1) o= O [43a,b]

i 1 6imRim

where the subscript 1 is used to identify T here with the linear rate model. Figure 5 shows a
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semilogarithmic plot of Eq. [43a], as well as of plots of average concentrations for several aggregate
geometries (see also Fig. 1). Included are two curves for diffusion from a hollow cylindrical
macropore into a finite soil mantle surrounding the macropore; the ratio go= b/a for those curves
refers to the ratio of the radii of the outer and inner cylinders (Eq. 23e). Note that the dimension-

less time for diffusion into the finite soil mantle surrounding the cylindrical macropore is given by

Dat
T =—— [44]

P (b—a)zRim
Similarly as before, we derived shape factors for conversion of various aggregate geometries into
"equivalent aggregates” that accumulate solute according to [43a]. For the conversion from spherical
aggregates, the shape factor fc; 1
1/2 o

£ .= . [45]

is now given by

Substitution of [29] for ’I‘s and [43b] for T, into [45] leads to the following definition for a in the

mobile~immobile model (Eqs. [38]-[42]) when that model is applied to spherical aggregates

D_6,
a im

2 [46]
a
s,1 s

Q=

Making use the Eqs. [34b] and [41] leads to the following relation between the dimenionless coeffi-
cients w and Yg!
(1-B)RY,
0= ——2= [47]
f
8,1
Similar equations apply to conversions from other aggregate geometries. 1In particular, the conversion
from a hollow cylinder to an equivalent first-order exchange model is given by [45] with the subscript
s replaced by p. Using [43b] and [44] yields then
D &
a=—2aim (48]

2.2
(b-a) fp,l

where fp 1 depends on the value of Eo = b/a as shown in Table 1. The dimensionless coefficients w and
3

YP are in this case related by

(1‘B)Rl(p
(g~ L

Figure 6 shows the concentration dependency of several relative shape factors for conversion into
"equivalent first~order rate equations”. Note that the shape factors for the hollow cylindrical
structures are only weakly dependent upon the concentration, while those for the plane sheet and sphere
are strongly concentration-dependent. To verify the accuracy of the much simpler Eq. [37] in
predicting transport through structured soils, Fig. 7 compares results based on Eqs. [38] and [42] with
the exact solutions for the spherical and rectangular void transport models. Similar comparisons for
the cylindrical macropore model are shown in Fig. 8. Notice the excellent approximation for the
cylindrical macropore problem, especially when go= 100. The approximations in Fig. 7 are far less
accurate. Considering the uncertainty in the many transport parameters that must be quantified in
these type of two-region models, it is unclear whether or not the approximations for the sphere and
line-sheet in Fig. 7 are acceptable for actual calculations. It may very well be that the match shown

in Fig. 7 is as good as reasonably can be expected when predicting transport through structured field
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soils. If so, then the advantages of using the much simpler Eq. [37] instead of the complete two-
region formulation should be clear. For example, Eq. [37] can be included easily in one- or multi-
dimensional transport models without greatly affecting the numerical complexity of the code. When
doing so, the coefficients (including the shape factors) can be made depth-dependent, an important
consideration when simulating transport through layered profiles. In any case, it is evident that the

otherwise empirical parameter « can now be expressed in terms of measurable soll-physical parameters.

SUMMARY AND CONCLUSIONS

This paper describes a method to transform (scale) soils containing aggregates of widely different
shapes and sizes (platy, columnar, prismatic) into a reference soil made up of wuniformly-sized
spherical aggregates. The transformation is accomplished through the introduction of a geometry-
dependent shape factor that converts an aggregate of given shape and size into an equivalent sphere
with similar diffusion characteristics as the original aggregate. Using known solutions for transport
around spherical, cylindrical and rectangular aggregates as test cases, the method was found to be very
accurate for most aggregate forms commonly encountered in the field. A similar transformation was also
used to quantify the unknown mass transfer coefficient in a previously employed first-order rate
expression for solute exchange between "mobile” (interaggregate) and "immobile" (intra-aggregate)
regions. This method proved to be extremely accurate for predicting transport through hollow
cylindrical macropores. The transformation into an “"equivalent first-order rate model”™ was found to be
far less accurate for spherical and line-sheet type aggregates. Considering the uncertainty in the
many transport parameters needed in two-region type models, the accuracy of the first-order rate
approximation is probably good enough for most field simulations. The transformations proposed in this
paper should make the two-region modeling approach applicable to more general conditions involving

soils with widely different aggregate geometries.

The transformations at present are still limited to soils containing uniformly-sized aggregates: no
provisions are given to deal with aggregate mixtures. Utility of the transformation could be greatly
enhanced when the method can be extended to experimentally derived aggregate size distributions
involving a mixture of aggregates of different shapes and sizes [see Rao et al. (1982) for a potential
lead]}. Soil physicists and soil morphologists over the years have collected a vast amount of
information on soil structure and soil aggregation (Brewer, 1964; Baver et al., 1972; Hillel, 1980;
Bouma, 1981). Perhaps some results of that research can be applied successfully to this or similar

theoretical work.
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